all Ticket Number:	
	Code No. : 13701 VC
VASAVI COLLEGE OF ENGINEERING (Auton B.E. (CBCS) III-Semester Main Examination	
Bridge Course: Fundamentals of Linear Algebra (Common to Civil, EEE, ECE & Mech. Time: 3 hours	
Note: Answer ALL questions in Part-A and any F Part-A (15 Marks)	
1. Find $\frac{dy}{dx}$, If $y^3 - 3ax^2 + x^3 = 0$.	[1]
2. Evaluate $\int e^x (1 + \cot x + \cot^2 x) dx$.	(1)
3. Find the Gradient of $2xy + z^2$ at (1,-1,3).	
4. Evaluate $\int_0^2 \int_0^x y dy dx$	[1]
5. If \overline{n} is the unit outward drawn normal to any closed surface	Carlor State of the second
6. Find First order partial derivatives of the function $\tan^{-1}(x + 1)$	+ y) [2]
7. Evaluate $\int x^2 \log x dx$	[2]
8. If $\overline{f} = (x + 3y)\overline{i} + (y + 2z)\overline{j} + (x + pz)\overline{k}$ is solenoidal, fin	ad p. [2]
9. Evaluate $\int_0^1 \int_0^2 \int_1^2 x^2 yz \ dz dy dx$	[2]
10. State Gauss's divergence theorem in a plane.	[2]
Part-B ($5 \times 7 = 35$ Marks) (All bits carry equal marks)	
11. a) If $z = f(x+ct) + g(x-ct)$, prove that $\frac{\partial^2 z}{\partial t^2} = c^2 \frac{\partial^2 z}{\partial x^2}$.	
b) If $u = f(y - z, z - x, x - y)$ Prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$	0
12. a) Evaluate $\int \frac{\cos x}{1+\sin^2 x} dx$.	
b) Evaluate $\int \frac{\sin x \cos x}{a^2 \cos^2 x + b^2 \sin^2 x} dx$.	
13. a) Find the Directional derivative of $\phi = x^2yz + 4xz^2$ at (2i-j-2k.	1,-2,-1) in the direction of
b) If $\overline{f} = \operatorname{grad}(x^3 + y^3 + z^3 - 3xyz)$ find div \overline{f} and $\operatorname{curl} \overline{f}$	
14. a) If $\overline{F} = 3xy\overline{i} - y^2\overline{j}$, find the work done by the force alo xy -plane from (0,0) to (1,2).	ng the Curve $y = 2x^2$ in the

b) Evaluate $\int_{s} \overline{F} \cdot \overline{n} \, ds$ where $\overline{F} = z\overline{i} + x\overline{j} - 3y^{2}z\overline{k}$ and S is the Surface $x^{2} + y^{2} = 16$ included in the first octant between z=0 and z=5.

Contd...2

- :: 2 ::
- 15. a) Using Gauss divergence theorem, Show that
 - $\int_{s} ax\overline{i} + by\overline{j} + cz\overline{k}) \ \overline{n} \ ds = \frac{4\pi}{3}(a+b+c), \text{ S: surface of the Sphere}$ $x^{2} + y^{2} + z^{2} = 1.$
 - b) Evaluate by Green's theorem $\int_c (x^2 \cos hy) dx + (y + \sin x) dy$ Where C is the rectangle with vertices $(0,0), (\pi, 0), (\pi, 1), (0,1)$
- 16. a) If $f = x^3 + y^3 3axy$ Verify $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.
 - b) Evaluate $\int \sin^4 x \, dx$.

Answer any two of the following:

- 17. a) Find the angle between the surfaces $x^2 + xy + y^2z + 3xyz = 4$ at (1,2,1) (-1,1,-1)
 - b) If $\overline{F} = (2x^2 3z)\overline{i} 2xy\overline{j} 4x\overline{k}$ then evaluate $\int_{v} div \overline{F} dv$, where v is the closed region bounded by the planes x = 0, y = 0, z = 0 and 2x + 2y + z = 4.
 - c) Using Stoke's theorem

Evaluate $\int_c (x+y)dx + (2x-z)dy + (y+z)dz$ here c is the boundary of the triangle with vertices (2,0,0),(0,3,0) and (0,0,6).

§§§§§

Station in the second station

of Builtane Lands a Long 19 40

- a) Find the Directional date structure is a project 1.5 and the Direction does being in 21-j-24;
 - b) If / "gnd(x" + y" + x" 3xy) (nd div/ and curit)
- (4. a) If F =3xy(-y²). (no the east, done by the face above backness y= 3x², in the xy -plane from (6.0) my (2).
- b) Evaluate $\int_{0} F = if ds$ where $F = ri + sf Sy^{2}rie$ and b is the South et $s^{2} + r^{2} = 16$. Included in the Forum that bendeen and and refs