VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (CBCS) III-Semester Main Examinations, December-2017

Bridge Course: Fundamentals of Linear Algebra and Vector Calculus

(Common to Civil, EEE, ECE \& Mech. Engg.)
Time: 3 hours
Max. Marks: 50
Note: Answer ALL questions in Part-A and any FIVE from Part-B
Part-A (15 Marks)

1. Find $\frac{d y}{d x}$, If $y^{3}-3 \mathrm{a} x^{2}+x^{3}=0$.
2. Evaluate $\int e^{x}\left(1+\cot x+\cot ^{2} x\right) d x$.
3. Find the Gradient of $2 x y+z^{2}$ at $(1,-1,3)$.
4. Evaluate $\int_{0}^{2} \int_{0}^{x} y d y d x$
5. If \bar{n} is the unit outward drawn normal to any closed surface then $\int_{v} \operatorname{div} \bar{n} d v$
6. Find First order partial derivatives of the function $\tan ^{-1}(x+y)$
7. Evaluate $\int x^{2} \log x d x$
8. If $\bar{f}=(x+3 y) \bar{\imath}+(y+2 z) \bar{\jmath}+(x+p z) \bar{k}$ is solenoidal, find p.
9. Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{1}^{2} x^{2} y z d z d y d x$
10. State Gauss's divergence theorem in a plane.

> Part-B $(5 \times 7=35$ Marks)
> (All bits carry equal marks)
11. a) If $z=f(x+c t)+g(x-c t)$, prove that $\frac{\partial^{2} z}{\partial t^{2}}=c^{2} \frac{\partial^{2} z}{\partial x^{2}}$.
b) If $u=f(y-z, z-x, x-y)$ Prove that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$
12. a) Evaluate $\int \frac{\cos x}{1+\sin ^{2} x} d x$.
b) Evaluate $\int \frac{\sin x \cos x}{a^{2} \cos ^{2} x+b^{2} \sin ^{2} x} d x$.
13. a) Find the Directional derivative of $\varnothing=x^{2} y z+4 x z^{2}$ at $(1,-2,-1)$ in the direction of $2 \mathrm{i}-\mathrm{j}-2 \mathrm{k}$.
b) If $\bar{f}=\operatorname{grad}\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ find div \bar{f} and curl \bar{f}.
14. a) If $\bar{F}=3 x y \bar{\imath}-y^{2} \bar{J}$, find the work done by the force along the Curve $y=2 x^{2}$ in the $x y$-plane from $(0,0)$ to $(1,2)$.
b) Evaluate $\int_{s} \bar{F} \cdot \bar{n} d s$ where $\bar{F}=z \bar{l}+x \bar{\jmath}-3 y^{2} z \bar{k}$ and S is the Surface $x^{2}+y^{2}=16$ included in the first octant between $z=0$ and $z=5$.
15. a) Using Gauss divergence theorem, Show that

$$
\left.\int_{s} a x \bar{\imath}+b y \bar{\jmath}+c z \bar{k}\right) \bar{n} d s=\frac{4 \pi}{3}(a+b+c), \text { S: surface of the Sphere }
$$

$$
x^{2}+y^{2}+z^{2}=1
$$

b) Evaluate by Green's theorem $\int_{c}\left(x^{2}-\cos h y\right) d x+(y+\sin x) d y$ Where C is the rectangle with vertices $(0,0),(\pi, 0),(\pi, 1),(0,1)$
16. a) If $f=x^{3}+y^{3}-3 a x y$ Verify $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$.
b) Evaluate $\int \sin ^{4} x d x$

Answer any two of the following:
17. a) Find the angle between the surfaces $x^{2}+x y+y^{2} z+3 x y z=4$ at $(1,2,1)(-1,1,-1)$
b) If $\bar{F}=\left(2 x^{2}-3 z\right) \bar{L}-2 x y \bar{j}-4 \mathrm{x} \bar{k}$ then evaluate $\int_{v} \operatorname{div} \bar{F} d v$, where v is the closed region bounded by the planes $x=0, y=0, z=0$ and $2 x+2 y+z=4$.
c) Using Stoke's theorem

Evaluate $\int_{c}(x+y) d x+(2 x-z) d y+(y+z) d z$ here c is the boundary of the triangle with vertices $(2,0,0),(0,3,0)$ and $(0,0,6)$.

